Nucleosome and transcription activator antagonism at human β-globin locus control region DNase I hypersensitive sites
نویسندگان
چکیده
Locus control regions are regulatory elements that activate distant genes and typically consist of several DNase I hypersensitive sites coincident with clusters of transcription activator binding sites. To what extent nucleosomes and activators occupy these sites together or exclusively has not been extensively studied in vivo. We analyzed the chromatin structure of human beta-globin locus control region hypersensitive sites in erythroid cells expressing embryonic and fetal globin genes. Nucleosomes were variably depleted at hypersensitive sites HS1-HS4 and at HS5 which flanks the 5' of the locus. In lieu of nucleosomes, activators were differentially associated with these sites. Erythroid-specific GATA-1 resided at HS1, HS2 and HS4 but the NF-E2 hetero-dimer was limited to HS2 where nucleosomes were most severely depleted. Histones H3 and H4 were hyperacetylated and H3 was di-methylated at K4 across the LCR, however, the H3 K4 MLL methyltransferase component Ash2L and histone acetyltransferases CBP and p300 occupied essentially only HS2 and the NF-E2 motif in HS2 was required for Ash2L recruitment. Our results indicate that each hypersensitive site in the human beta-globin LCR has distinct structural features and suggest that HS2 plays a pivotal role in LCR organization at embryonic and fetal stages of globin gene expression.
منابع مشابه
The role of transcriptional activator GATA-1 at human β-globin HS2
GATA-1 is an erythroid activator that binds beta-globin gene promoters and DNase I hypersensitive sites (HSs) of the beta-globin locus control region (LCR). We investigated the direct role of GATA-1 interaction at the LCR HS2 enhancer by mutating its binding sites within minichromosomes in erythroid cells. Loss of GATA-1 in HS2 did not compromise interaction of NF-E2, a second activator that bi...
متن کاملThe role of transcriptional activator GATA-1 at human b-globin HS2
GATA-1 is an erythroid activator that binds b-globin gene promoters and DNase I hypersensitive sites (HSs) of the b-globin locus control region (LCR). We investigated the direct role of GATA-1 interaction at the LCR HS2 enhancer by mutating its binding sites within minichromosomes in erythroid cells. Loss of GATA-1 in HS2 did not compromise interaction of NF-E2, a second activator that binds to...
متن کاملReconstitution of human beta-globin locus control region hypersensitive sites in the absence of chromatin assembly.
The human beta-globin genes are regulated by the locus control region (LCR), an element composed of multiple DNase I-hypersensitive sites (HS sites) located 5' to the genes. Various functional studies indicate that the LCR confers high-level, position-independent, and copy number-dependent expression to linked globin genes in transgenic mice. However, the structural basis for LCR function is un...
متن کاملA human globin enhancer causes both discrete and widespread alterations in chromatin structure.
Gene activation requires alteration of chromatin structure to facilitate active transcription complex formation at a gene promoter. Nucleosome remodeling complexes and histone modifying complexes each play unique and interdependent roles in bringing about these changes. The role of distant enhancers in these structural alterations is not well understood. We studied nucleosome remodeling and cov...
متن کاملZebrafish globin switching occurs in two developmental stages and is controlled by the LCR.
Globin gene switching is a complex, highly regulated process allowing expression of distinct globin genes at specific developmental stages. Here, for the first time, we have characterized all of the zebrafish globins based on the completed genomic sequence. Two distinct chromosomal loci, termed major (chromosome 3) and minor (chromosome 12), harbor the globin genes containing α/β pairs in a 5'-...
متن کامل